MARCH 7th 2019 Puerto Varas, Chile

A PARTICIPATORY FOREST MANAGEMENT Planning Approach Supported by Nulticriteria Decision Methods Suste Marques, Vladimir Bushenkov, Alexander Lotov, José Borges & Marco Marti

CIMA - UE

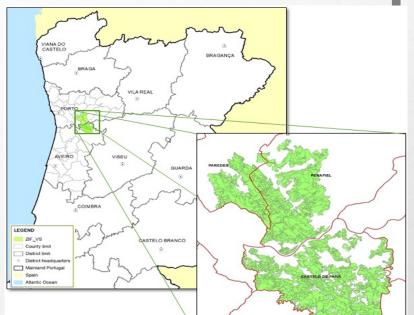
THE NEED TO DECOMPOSE THE PROBLEM...

• LANDSCAPE LEVEL MANAGEMENT PLANNING OF FOREST AREAS TYPICALLY INVOLVES SEVERAL STAKEHOLDERS WITH MULTIPLE INTERESTS, WHICH COMPLICATES THE DEVELOPMENT OF JOINT LANDSCAPE LEVEL MANAGEMENT PLANS AND THE PROVISION OF ECOSYSTEM SERVICES.

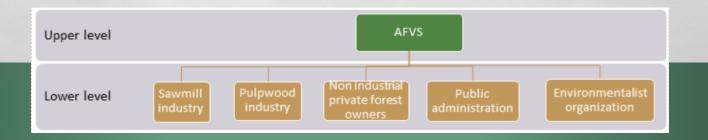
• THE DECOMPOSITION TECHNIQUE IS APPLIED IN FOREST OPTIMIZATION PROBLEMS, WITH LARGE NUMBER OF DECISION VARIABLES.

OIT'S USED TO SUPPORT AN ECONOMIC PLANNING PROCESS AT DISTINCT LEVELS: PLANNING ENTITIES (UPPER LEVEL) AND OTHER STAKEHOLDERS (LOWER LEVEL).

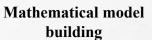
• THUS, MULTIOBJECTIVE OPTIMIZATION TOOLS (EG. PARETO FRONTIER VISUALIZATION TECHNIQUES) ARE USED TO SUPPORT NEGOTIATIONS.

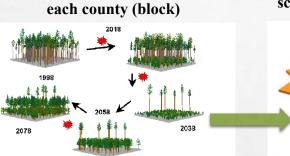

CASE STUDY

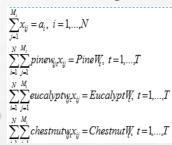
About 14 388 ha with 1976 management units and 330 landowners,

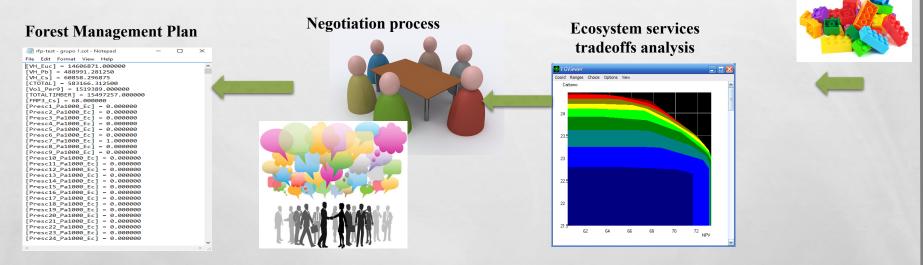

Dominated by eucalypt pure stands (66%) and mixed stands of eucalypt and maritime pine (33%). The remaining area is occupied by hardwoods, specially chestnuts.

- Ecosystem services:
 - Eucalypt pulpwood,
 - Maritime pine saw logs;
 - Chestnut saw logs ;
 - Carbon storage and
 - Volume of ending inventory.




		1 (-		
	Paiva	Paredes	Penafiel	ZIF_VS
Forested area (ha)	7626.27	2138.74	5085.38	14832
Number of management units	1293	235	654	2182
MU average area (ha)	5.9	9.1	7.8	6.8
MU max area (ha)	100.2	99.5	97.47	100.2
MU min area (ha)	0.5	0.5	0.5	0.5


Forest evolution



FMA simulation for all stands in

scenarios, ES provision

SADFLOR - A WEB-BASED FOREST AND NATURAL RESOURCES DSS

ForChange

DE ÉVORA

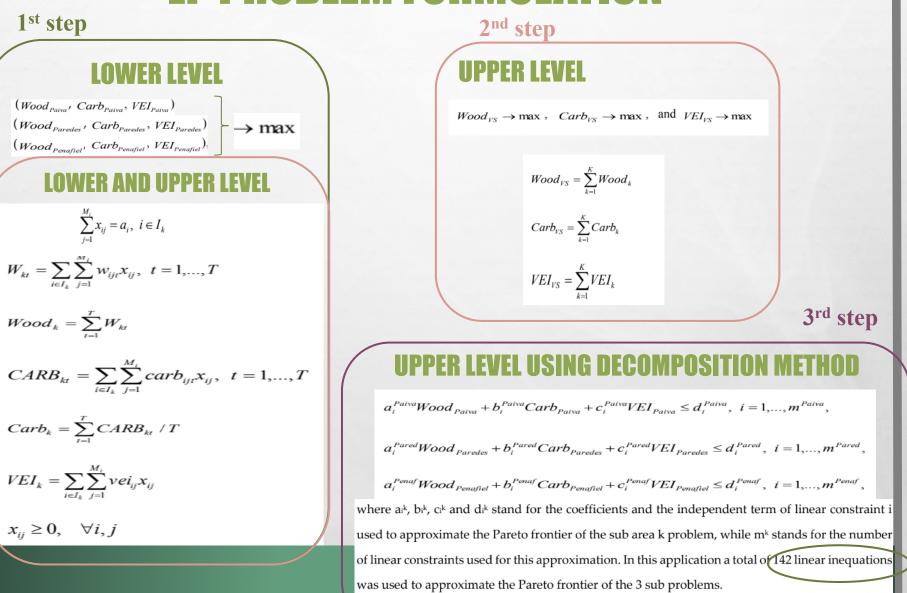
CIMA T

Welcome to SADFLOR

The **SADFLOR** web application is a decision support system to Eucalypt, Maritime Pine, Umbrella Pine and Chestnut stands. More...

Register

Username:	_
Password:	
En	te


New version to Maritime Pine simulator. New Management Area: Vale do Sousa.

Growth Simulation

 Incorporated the Pareto Frontier.

84000 stand-level prescriptions
90-year planning horizon
1 year periods

LP PROBLEM FORMULATION

PARETO FRONTIER MODULE

File Construct Analyse Solution Options Help ×Ι 🎯 🗚 🔢 work Set Value Max Cr Name Min Unit VH Euc (10^6_m3) VH Pbravo (10^6_m3) ... VH Castan (10^6_m3) ... max Madeira (10^6_m3) max CarbMedio (10^3_ton) C Euc (Unit) ... C Pbravo (Unit) C_Castanheiro (Unit) max VolEI (10^6_m3) VoIEI Euc 10 (Unit) - - -11 VolEI_Pb (Unit) 12 VoleEI_Cs (Unit) AreaFMP1_Euc 13 (ha) AreaFMP2 Euc 14 (ha) AreaFMP4_Euc 15 (ha)

The second s

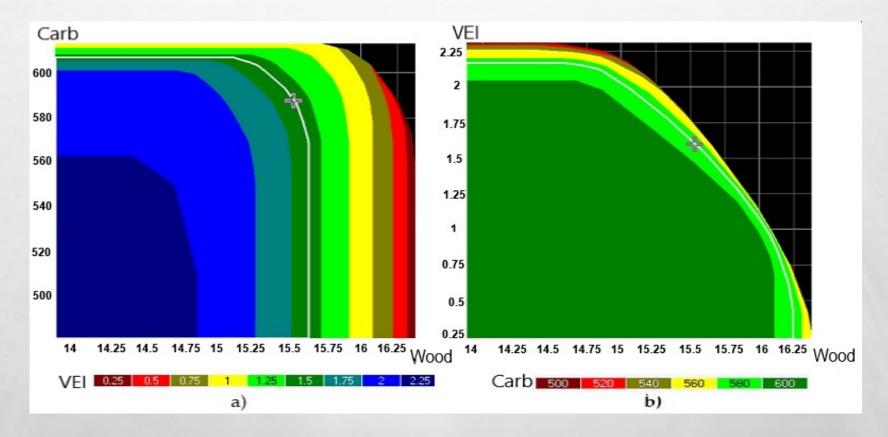
Selected: 3 criteria

Sel

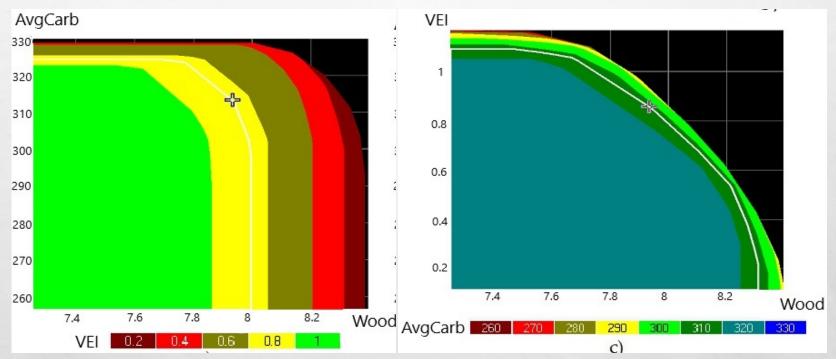
A sea

Feasible Goal X3: VSousaNN.cplex

~


the s

and the second


Х

^

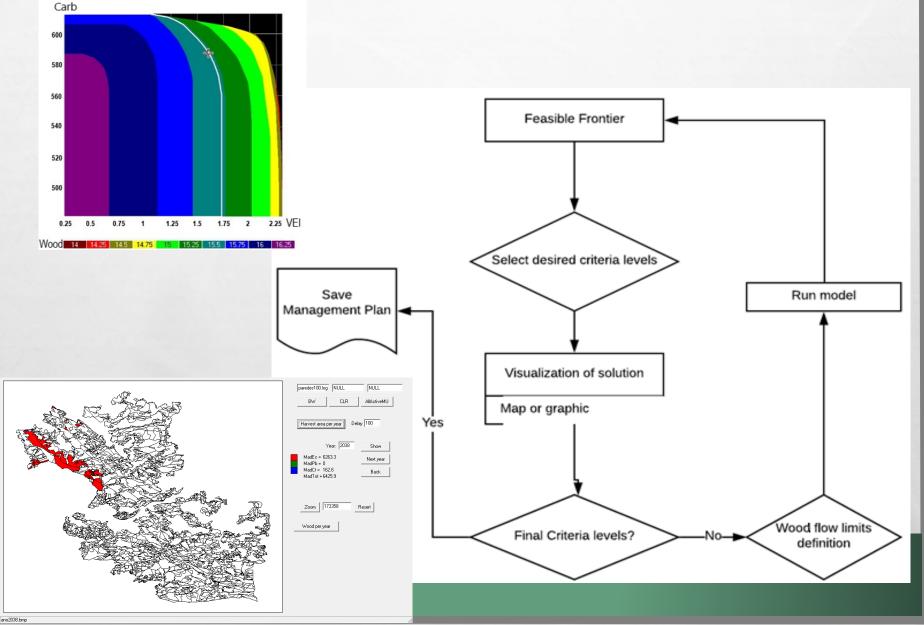
DECOMPOSITION RESULTS – FULL MODEL UPPER LEVEL

DECOMPOSITION RESULTS – LOWER LEVEL (E.G. PAIVA)

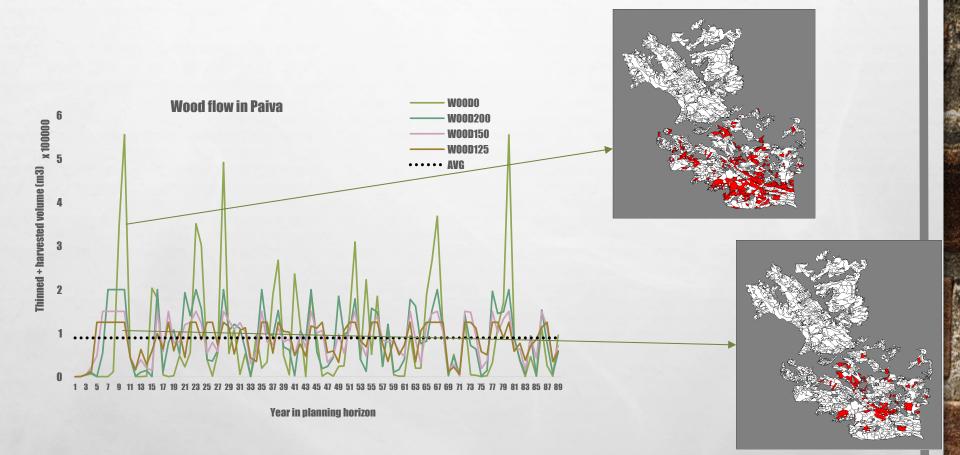
L. M.

1.,

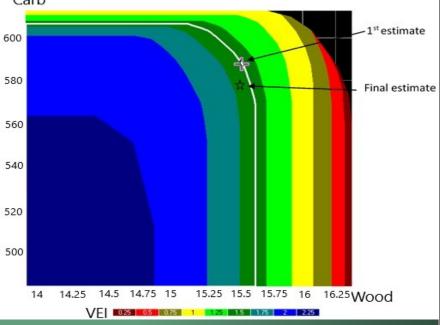
Sec


den i

DECOMPOSITION RESULTS


	Computation	cost in seconds	Dime	nsion of LP	problems
	CPLEX (10% precision)	CPLEX (1% precision)	Rows	Columns	Non zeros
EPH for Paiva sub-area	119	737	3515	46355	15394015
EPH for Paredes sub-area	16	106	2392	8884	2307164
EPH for Penafiel sub-area	72	417	2790	20844	6504067
Joining separate sub-area's EPH	1	1	-	-	-
Full time for approximating the EPH using the decomposition method	208	1261	-	-	-
Full time for approximating the EPH using the full model	556	3728	8700	76086	24250258

Problem solving considered two linear programing solvers (CPLEX and GLPK) and a personal computer with an Intel Core i7 processor with 1.60 GHz frequency and 8 Gb memory.


NEGOTIATION PROCESS

RESULTS VISUALIZATION MODULE

0.00										
Area ValeSousa		ISA	Paiva		Paredes		Penafiel			
ES		1st	Last	1 st	Last	1 st	Last	1st	Last	
Wood	Range	13.88 - 16.38		7.25-8.39		1.71-2.07		4.93 - 5.91		
(m ³ x 10 ⁶)	Solution	15.53	15.51	7.93	7.98	2.01	1.98	5.59	5.55	
Carbon Stock	Range	481.54 - 6	481.54 - 613.07		256.41 - 328.78		54.02 - 69.82		171.57-214.48	
(Mg x 10 ³)	Solution	588	574	313.2	303	68.5	67	206.0	204	
VEI	Range	0.23 - 2.31		0.12 - 1.17		0.012- 0.28		0.09 - 0.86		
(m ³ x 10 ⁶)	Solution	1.6	1.62	0.86	0.79	0.15	0.18	0.59	0.65	
							Carb 600 580			
-	÷/		*				560 540 520			

REMARKS AND FINAL CONSIDERATIONS

- THIS APPROACH CONTRIBUTES TO ADDRESS COMPUTATIONAL CONSTRAINTS ASSOCIATED TO THE SOLUTION OF COMPLEX FOREST RESOURCES MANAGEMENT PLANNING.
- BI-LEVEL PLANNING MAY HELP DEVELOP SATISFACTORY SOLUTIONS FOR BOTH THE UPPER AND THE LOWER LEVEL DECISIONMAKERS.
- OUR RESULTS DID DEMONSTRATE THE EFFICIENCY OF THE PROCESS FOR BUILDING THE PARETO FRONTIER OF VERY LARGE PROBLEMS FROM THE PARETO FRONTIERS OF SMALLER AND COMPUTATIONAL SIMPLER SUB PROBLEMS.
- THIS WILL BE INFLUENTIAL FURTHER TO ADDRESS MORE COMPLEX PROBLEMS THAT NEED INTEGER SOLUTION APPROACHES.
- THE PROVISION OF SEVERAL ECOSYSTEM SERVICES DOES DEPEND ON THE SPATIAL
 CONDITIONS GENERATED BY THE HARVEST SCHEDULING PLANS OUR
 DECOMPOSITION APPROACH MAY CONTRIBUTE TO THE POSSIBILITY OF BUILDING
 PARETO FRONTIERS OF COMPLEX SPATIAL OPTIMIZATION MODELS.

MARCH 7th 2019 Puerto Varas, Chile

S. Marques, V. A. Bushenkov, A. V. Lotov, M. Marto and J. G. Borges 2019. Bi-level participatory forest management planning supported by Pareto frontier visualization. Forest Science, DOI: 10.1093/forsci/fxz014 Accepted (January 11th)

THANK YOU! GRACIAS! OBRIGADA!

Project UID/MAT/04674/2013 (CIMA) Project UID/AGR/00239/2013 (CEF) SFRH/BPD/96806/2013 (SM) SFRH/BD/108225/2015 (MMt)