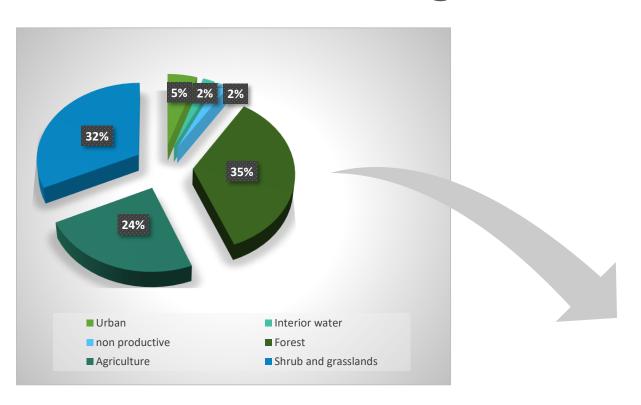
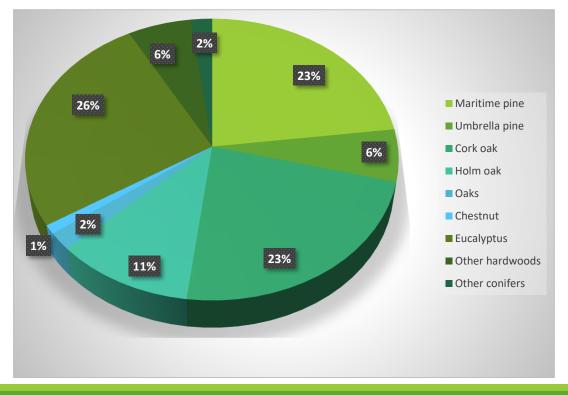
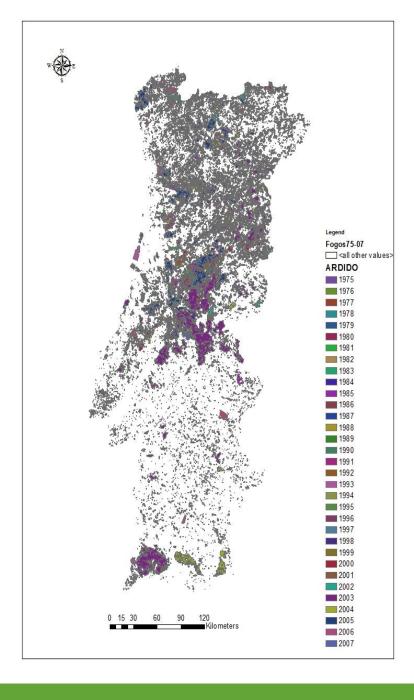


A PARETO FRONTIER DECOMPOSITION APPROACH TO ADDRESS MULTIPLE CRITERIA FOREST ECOSYSTEM MANAGEMENT

SUSETE MARQUES, VLADIMIR BUSHENKOV, ALEXANDER LOTOV, MARCO MARTO, JOSÉ BORGES






Portuguese Forest in numbers...

The forest, multiple use and ecosystem services

NEWS

Home Video World UK Business Tech Science Magazine Entertainment & Arts

Portugal in mourning as fires kill dozens

Many were burned to death in their cars as they tried to flee the fires in central Portugal.

⊙7m Europe

PORTUGAL

Ponte de Sor

Coimbra

Pedrógão Grande

Castanheira de Pêra 🌒

Figueiró dos Vinhos

Leiria

Santarém

le 'Oh my house, my house' In pictures: Portugal forest fire

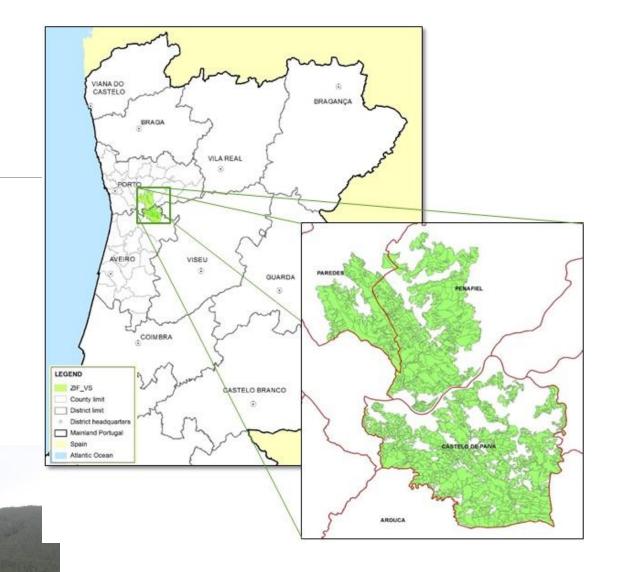
Article

Addressing Wildfire Risk in Forest Management Planning with Multiple Criteria Decision Making Methods

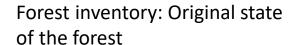
Susete Marques 1,*, Marco Marto 1, Vladimir Bushenkov 2, Marc McDill 3 and José G. Borges 1

- Forest Research Center, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; marcovmarto@isa.ulisboa.pt (M.M.); joseborges@isa.ulisboa.pt (J.G.B.)
- Research Centre for Mathematics and Applications, University of Évora, Colégio Luís Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; bushen@uevora.pt
- Department of Ecosystems Science and Management, Pennsylvania State University, 310 Forest Resources Building University Park, State College, PA 16802-4301, USA; mmcdill@psu.edu
- * Correspondence: smarques@isa.ulisboa.pt; Tel.: +351-21-365-3366

Academic Editor: Marc A. Rosen


Received: 30 November 2016; Accepted: 14 February 2017; Published: 18 February 2017

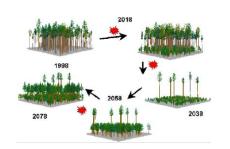
Case study


About 14 388 ha with 1976 management units and 330 landowners,

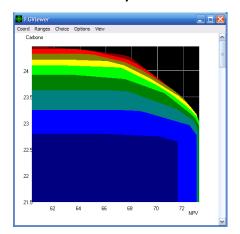
Dominated by **eucalypt pure stands** (66%) and **mixed stands** of **eucalypt** and **Maritime pine** (33%) The remaining area is occupied by **hardwoods**.

- Ecosystem services:
 - Eucalypt pulpwood,
 - Maritime pine saw logs;
 - Chestnut saw logs;
 - Carbon storage and
 - Volume of ending inventory.
 - Fire Resistance

Workflow


Data processing

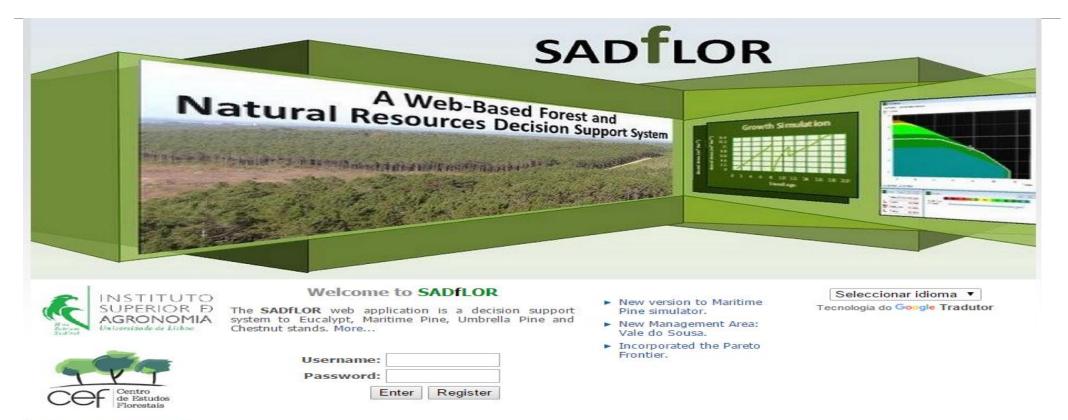
Stand characterization



FMA simulation for all stands in each county (block)

Forest evolution scenarios, ES provision

Ecosystem services tradeoffs analysis


Mathematical model building

$$\begin{split} &\sum_{j=1}^{M_t} x_{ij} = a_i, \ i = 1,...,N \\ &\sum_{j=1}^{N} \sum_{j=1}^{M_t} pinew_{ij} x_{ij} = PineW_t, \ t = 1,...,T \\ &\sum_{i=1}^{N} \sum_{j=1}^{M_t} eucalyptw_t x_{ij} = EucalyptW_t, \ t = 1,...,T \\ &\sum_{i=1}^{N} \sum_{j=1}^{M_t} chestnutw_t x_{ij} = ChestnutW_t, \ t = 1,...,T \end{split}$$

SADfLOR - a web-based Forest and Natural Resources **DSS**

UNIVERSIDADE

ForChange

$$\sum_{j=1}^{M_i} x_{ij} = a_i \ i = 1, ..., N \tag{1}$$

The LP model
$$\sum_{i=1}^{N} \sum_{j=1}^{Mi} eucalypt w_{ijt} x_{ij} = Eucalypt W_t \ t = 1, ..., T$$

$$\sum_{j=1}^{M_i} x_{ij} = a_i \ i = 1, ..., N \tag{2}$$

$$\sum_{i=1}^{N} \sum_{j=1}^{Mi} eucalypt w_{ijt} x_{ij} = Eucalypt W_t \quad t = 1, ..., T$$
(3)

$$\sum_{i=1}^{N} \sum_{j=1}^{Mi} chestnut w_{ijt} x_{ij} = Chestnut W_t \quad t = 1, ..., T$$

$$\tag{4}$$

$$\sum_{i=1}^{N} \sum_{j=1}^{Mi} carb_{ijt} x_{ij} = Carb_t \quad t = 1, ..., T$$
 (5)

$$\sum_{i=1}^{N} \sum_{j=1}^{Mi} npv_{ij} x_{ij} = NPV \tag{6}$$

Understory fuel reduction (0,1,5,10,15 Years)

$$\sum_{i=1}^{N} \sum_{j=1}^{Mi} cs_{ij} x_{ij} = C$$

$$\tag{7}$$

$$\sum_{t=1}^{T} PineW_t = PineSawlogs \tag{8}$$

$$\sum_{t=1}^{T} EucalyptW_t = EucalyptPulpwood$$
(9)

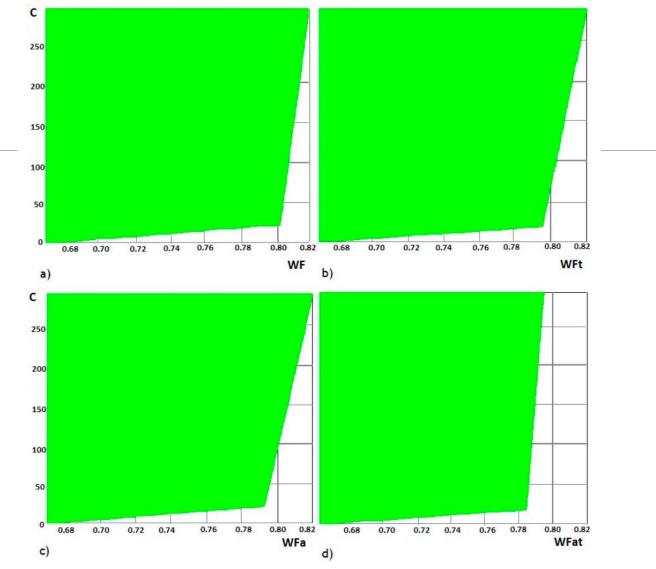
$$\sum_{t=1}^{T} Chestnut W_t = Chestnut Sawlogs$$
 (10)

$$\sum_{t=1}^{T} \frac{Carb_t}{T} = CARB \tag{11}$$

$$\sum_{i=1}^{N} \sum_{j=1}^{Mi} vei_{ij} x_{ij} = VEI$$
 (12)

The LP model (cont.)

 $x_{ij} \geq 0, \ \forall i, j$


$$\sum_{i=1}^{N} \sum_{j \in FMP_{ij}} x_{ij} = A_{FMP_{j}} f = 1, ..., 4$$

$$\sum_{j=1}^{M_{i}} \frac{r_{ij} x_{ij}}{a_{i}} = R_{it} \quad i = 1, ..., N, \ t = 1, ..., T$$

$$\sum_{i=1}^{N} \frac{a_{i} R_{it}}{FA} = WF_{T} \quad t = 1, ..., T$$
(15)
$$\sum_{t=1}^{T} \frac{WF_{T}}{T} = WF$$
(16)
$$\sum_{t=1}^{T} \frac{WF_{T}}{T} = WF$$
(17)
$$\sum_{i=1}^{N} \frac{a_{i} Ra_{it}}{FA} = WFa_{t} \quad t = 1, ..., T$$
(18)
$$\sum_{t=1}^{T} \frac{WFa_{t}}{T} = WFa$$
(19)

(20)

Pareto frontier module

Figure 2. Trade-offs between fuel treatment costs (*C*) and (**a**) the non-adjusted average resistance wildfire indicator (WF); (**b**) the non-adjusted resistance wildfire indicator at the end of the planning horizon (WFT); (**c**) the non-adjusted average resistance wildfire indicator (WFa); and (**d**) the non-adjusted resistance wildfire indicator at the end of the planning horizon (WFaT).

Fix Point Terminate Choice مربعتك والمحار [Presc9 Pa112b] 301 [Presc100 Pa139a] 833 [Presc8 Pa215b] 853 [Presc8 Pa216a] 873 [Presc8 Pa217a] 1 893 [Presc8_Pa218a] 913 [Presc9 Pa219a] 1 953 [Presc9_Pa221a] 973 [Presc9 Pa222a] 1 1 993 [Presc9_Pa225a] 1 1031 [Presc99 Pa235a] 1032 [Presc9_Pa237a] 1052 [Presc9 Pa238a] 1 1091 [Presc98 Pa240a] 0.305941 1093 [Presc8 Pa241a] 1 1132 [Presc9 Pa244a] 1 1161 [Presc100 Pa256a] 1171 [Presc100 Pa257a]

x = 14.7943, y= 0.20372

0.05

fp-test - grupo 1.sol - Notepad

File Edit Format View Help

[VH Euc] = 14606871.000000

[VH Pb] = 488991.281250[VH Cs] = 60858.296875

[CTOTAL] = 583166.312500

[Vol Per9] = 1519389.000000

[TOTALTIMBER] = 15497257.000000

[FMP3 Cs] = 68.000000

[Presc1 Pa1000 Ec] = 0.000000

[Presc2 Pa1000 Ec] = 0.000000

[Presc3 Pa1000 Ec] = 0.000000

[Presc4 Pa1000 Ec] = 0.000000

[Presc5_Pa1000_Ec] = 0.000000

[Presc6 Pa1000 Ec] = 0.000000

[Presc7 Pa1000 Ec] = 1.000000

[Presc8 Pa1000 Ec] = 0.000000

[Presc9 Pa1000 Ec] = 0.000000

[Presc10 Pa1000 Ec] = 0.000000

[Presc11 Pa1000 Ec] = 0.000000

[Presc12 Pa1000 Ec] = 0.000000

[Presc13 Pa1000 Ec] = 0.000000

[Presc14 Pa1000 Ec] = 0.000000

[Presc15 Pa1000 Ec] = 0.000000

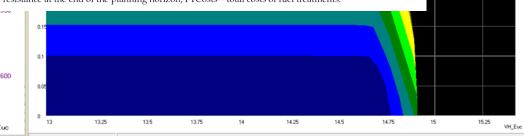
[Presc16 Pa1000 Ec] = 0.000000

[Presc17 Pa1000 Ec] = 0.000000

[Presc18 Pa1000 Ec] = 0.000000

[Presc19 Pa1000 Ec] = 0.000000

[Presc20_Pa1000_Ec] = 0.000000


[Presc21_Pa1000_Ec] = 0.000000

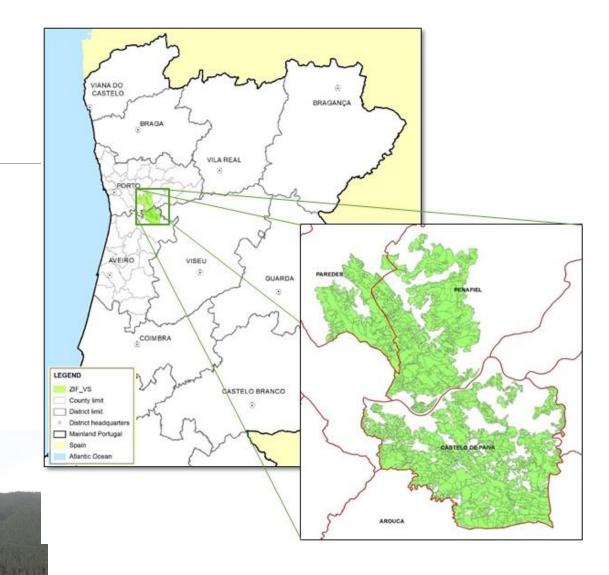
VH Castan [Presc22_Pa1000_Ec] = 0.000000 [Presc23 Pa1000 Ec] = 0.000000

[Presc24 Pa1000 Ec] = 0.000000

Ecosystem Service List	Value	Units
HV_Euc	14.72	10^6 m^3
HV_Mp	0.23	10^6 m^3
HV_Chest	0.14	10^6 m^3
Thwood	0.39	10^6 m^3
TWood	15.48	10^6 m^3
AvgCarb	593.47	$10^3~{ m Mg\cdot year^{-1}}$
VolEI	1.5	10^{6} m^{3}
Euc area	12729.9	На
MP area	1174.5	На
Chestnut area	256.9	Ha
AreaConvMPChest	355.39	Ha
WF	0.760	-
WF_{T}	0.747	-
Wfa	0.742	-
WFa_{T}	0.731	-
FTCosts	145.41	€10 ⁴

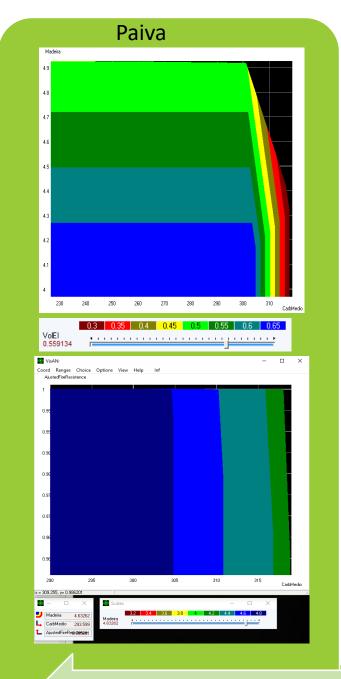
Where: HV_Euc = eucalypt volume harvested, HV_Mp = maritime pine volume harvested; HV_Chest = chestnut volume harvested; Thwood = thinned wood from maritime pine, eucalyptus and chestnuts; TWood = total volume harvested + thinned; AvgCarb = average carbon stock per year; VoIEI = volume of ending inventory; Euc area = area occupied with eucalypt; MParea = area occupied with maritime pine; Chest area = area occupied with chestnuts; WF = landscape non-adjusted average wildfire resistance; WF_T = landscape non-adjusted wildfire resistance at the end of the planning horizon; WFa = landscape adjusted average wildfire resistance; WFa_T = landscape adjusted wildfire resistance at the end of the planning horizon; FTCosts—total costs of fuel treatments.

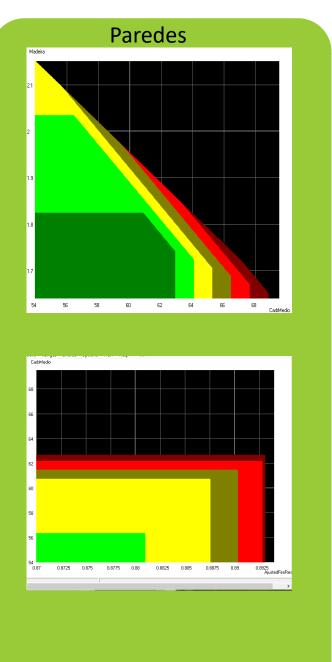
_ _ Scales VH Castan

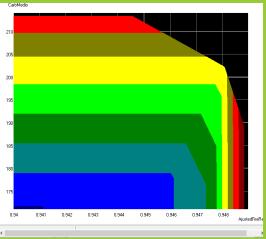

The need to decompose the problem...

C

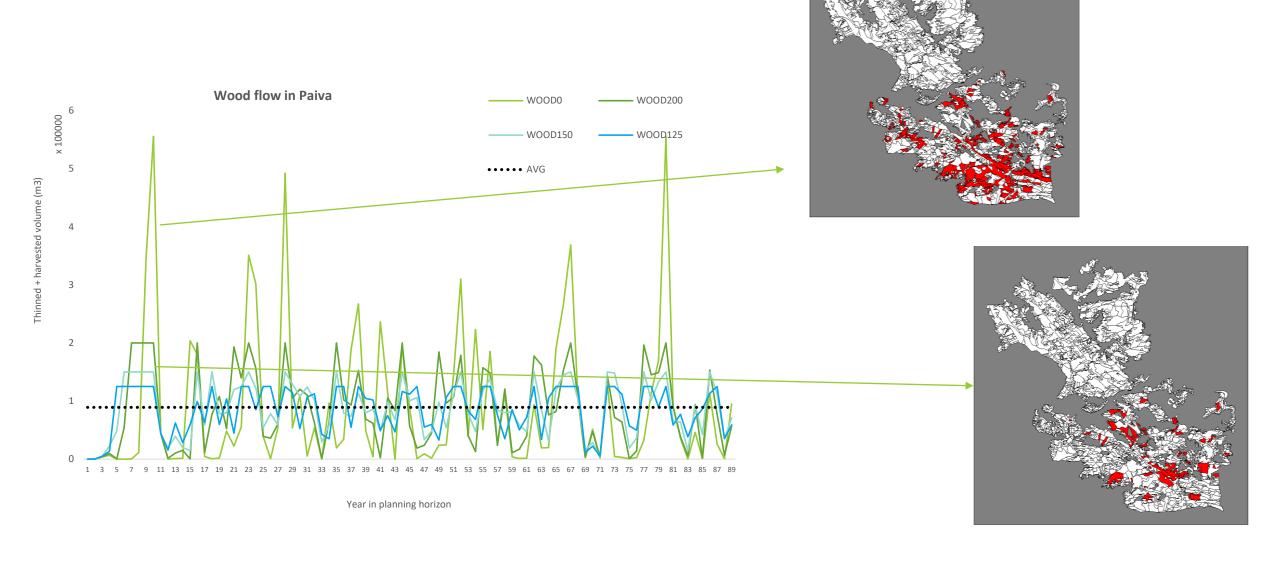
- This technique is applied in forest optimization problem, which large number of decision variables.
- Thus, approximating the EPH is a very complicated problem in this case.
- To solve this problem, its block separable structure is used.


Case study


	Paiva	Paredes	Penafiel	ZIF_VS
Forested area (ha)	7626.27	2138.74	5085.38	14832
Number of management units	1293	235	654	2182
MU average area (ha)	5.9	9.1	7.8	6.8
MU max area (ha)	100.2	99.5	97.47	100.2
MU min area (ha)	0.5	0.5	0.5	0.5


Wood - YY Carbon - XX VolEI - Color

Carbon_YY
Fire Resistence -XX
Madeira- Color



Decomposition results

Area		ZIF_VS		Paiva		Paredes		Penafiel	
ES		1st	2nd	1st	2nd	1st	2nd	1st	2nd
Wood	Range	13.88 – 16.38		7.25-8.39		1.71-2.07		4.93 – 5.91	
(m³ x 10 ⁶)	Point	15.52	15.45	7.93	7.98	2.01	1.98	5.59	5.55
Carbon Stock	Range	481.54 - 613.07		256.41 – 328.78		54.02 – 69.82		171.57– 214.48	
(Mg x 10 ³)	Point	588	550	313.2	303	68.5	67	206.0	204
VolEl	Range	0.23 – 2.31		0.12 – 1.17		0.012-0.28		0.09 - 0.86	
(m³ x 10 ⁶)	Point	1.6	1.58	0.86	0.79	0.15	0.18	0.59	0.65

Results visualization module

Thank you!!!

Research funded by:

