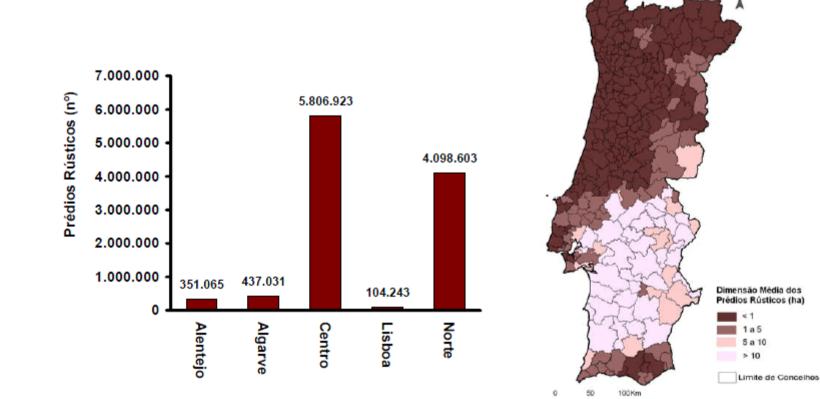


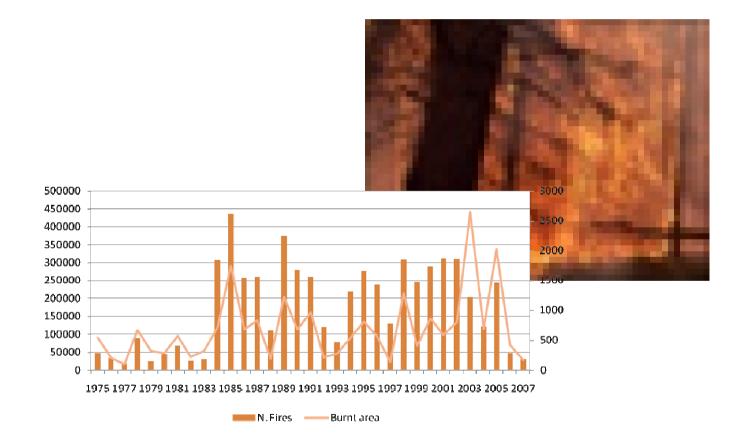
Models and decision SUpport tools for integrated FOrest policy development underglobal change and associated Risk and UNcertainty

Multiple criteria approaches to forest management – recent advances and open problems

José G. Borges, Susete Marques, Marco Marto, Vladimir Bushenkov


joseborges@isa.ulisboa.pt

Outline

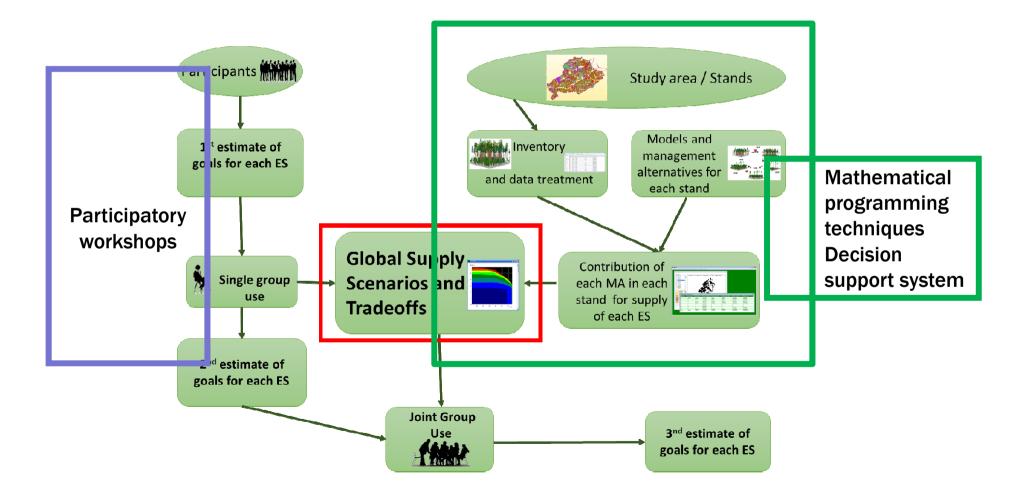

- **1**. The context
- 2. The case studies
- 3. Recent advances
- 4. Open problems

Context

Source: DGI

Context

Context


✓ and yet

- out of about 38% of the territory this fragmented the country gets
- > 2% of GDP (3rd largest in the EU), > 5 % of employment, > 9% of exports
- only sector where Portugal is the first in the world (cork)
- nevertheless property fragmentation may be an obstacle to landscape-level planning
 - and thus the provision of Ecosystem services carbon, biodiversity, nature conservation, timber
 - and thus to adequate wildfire prevention levels

The case studies

Recent advances

The mathematical programming model

$$\sum_{j=1}^{M_i} x_{ij} = a_i, \ i = 1, \dots, N$$
(1)

$$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} pinew_{ijt} x_{ij} = PineW_{t}, \ t = 1,...,T$$
(2)

$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} eucalypt w_{ijt} x_{ij} = Eucalypt W_t, \ t = 1, \dots, T$$
(3)

$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} chestnut w_{ijt} x_{ij} = Chestnut W_t, \ t = 1, \dots, T$$

$$\tag{4}$$

$$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} corkA_{ijt} x_{ij} = CORKA_{t}, \ t = 1,...,T$$
(5)

$$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} cones_{ijt} x_{ij} = Cones_{t}, \ t = 1,...,T$$
(6)

$$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} carb_{ijt} x_{ij} = CARB_{t}, \ t = 1,...,T$$
(7)

$$NPV = \sum_{i=1}^{N} \sum_{j=1}^{M_i} c_{ij} x_{ij}$$
(8)

The mathematical programming model

$$Cork = \sum_{t=1}^{T} CORKA_{t}$$
(9)

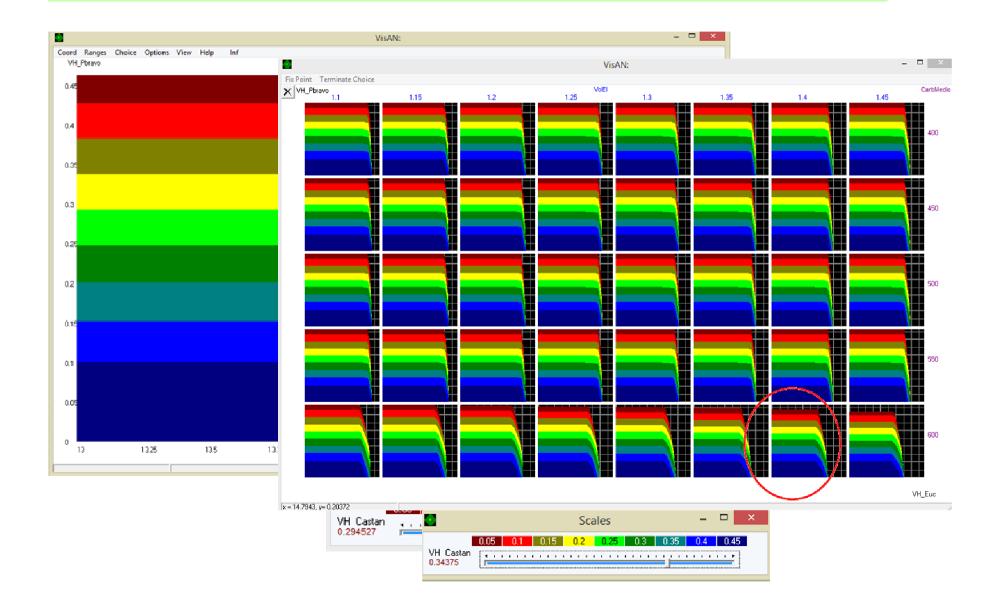
$$Cones = \sum_{t=1}^{T} Cones_{t}$$
(10)

$$PineSawlogs = \sum_{t=1}^{T} PineW_t$$
(11)

$$EucalyptPulpwood = \sum_{t=1}^{T} EucalyptW_{t}$$
(12)

$$ChestnutSawlogs = \sum_{t=1}^{T} ChestnutW_{t}$$
(13)

$$Carb = \sum_{t=1}^{T} CARB_{t} / T$$
(14)

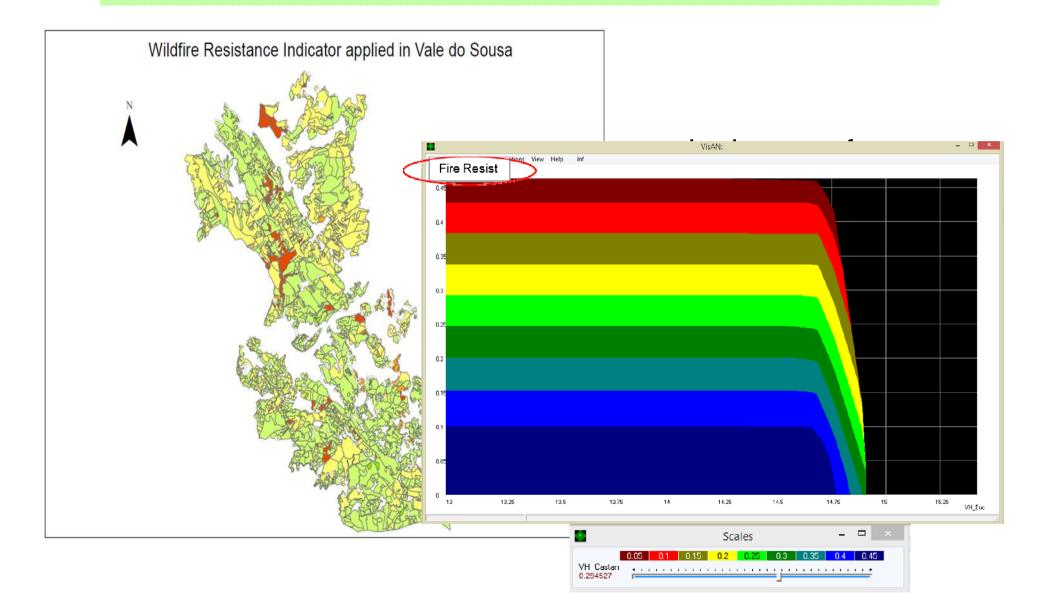

$$VEI = \sum_{i=1}^{N} \sum_{j=1}^{M_i} vei_{ij} x_{ij}$$
(15)

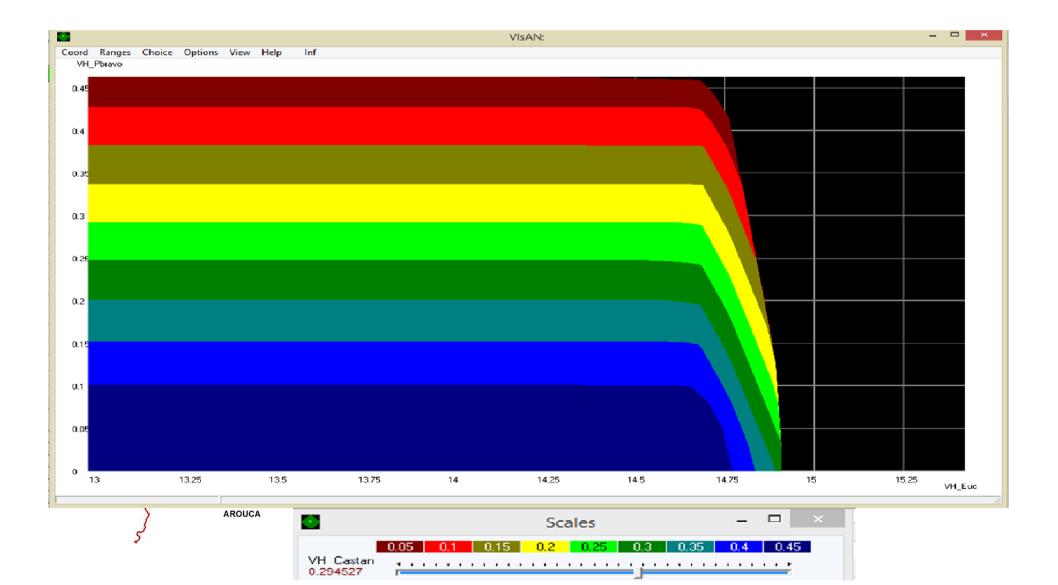
$$A_FMP_f = \sum_{i:1}^{N} \sum_{j=1}^{M_i} x_{ij}$$
, where $j \in FMP_f$, $f = 1,..., 3, F$ (16)

$$x_{ij} \ge 0, \forall i, j \tag{17}$$

Borges, J. G., J. Garcia-Gonzalo, V.A. Bushenkov, M. E. McDill, S. Marques and M.M. Oliveira 2014 Addressing multi-criteria forest management with Pareto Frontier methods: an application in Portugal *Forest Science* 60: 63-72. DOI: <u>http://dx.doi.org/10.5849/forsci.12-100</u>

The decision support system MCDM module




Results

	Units	2014-2104					
Ecosystem Services		1 st estimate					
			Group 1	Group 2	Group 3	3rd estimate solution	
Eucalypt pulpwood	m ³	15.4 x 10 ⁶	14.6 x 10 ⁶	14.6 x 10 ⁶	14.9 x 10 ⁶	14.5 x 10 ⁶	
Pine saw logs	m ³	0.69 x 10 ⁶	0.01 x 10 ⁶	0.24 x 10 ⁶	0.27 x 10 ⁶	0.2 x 10 ⁶	
Chestnut saw logs	m ³	0.01 x 10 ⁶	0.45 x 10 ⁶	0.31 x 10 ⁶	0.27 x 10 ⁶	0.34 x 10 ⁶	
Volume of ending inventory	m ³	-	1.5 x 10 ⁶	1.5 x 10 ⁶	1.1 x 10 ⁶	1.4 x 10 ⁶	
Average carbon stock	Mg/year	_	0.6 x 10 ⁶	06 x 10 ⁶	0.6 x 10 ⁶	0.6 x 10 ⁶	

Results

Management Programs	Current		To meet targets (3 rd estimate)	
	ha	%	ha	%
1 - Mixed maritime pine (<i>Pinus pinaster</i>) and eucalypt (<i>Eucalyptus globulus</i>) forest system, dominance of maritime pine	2302	16.0	462	3.2
2 - Mixed maritime pine (<i>Pinus pinaster</i>) and eucalypt (<i>Eucalyptus globulus</i>) forest system, dominance of eucalypt	2446	17.0	769	5.3
3 – Chestnut (<i>Castanea</i> sativa) forest systems for production of chestnut saw logs	101	1	1282	8.9
4 - – Eucalypt (<i>Eucalyptus globulus</i>) forest system for pulpwood production	9499	66.0	11875	82.5

Choose one Sp	ecies: Che	stnut	Show Ta	able		Choose one Year of Planning Horizon: 90 🔻 Show Chart
Var	Period1	Period2	Period3	Period4	Perio	
Volume of Ending Inventory (m3)	3 398,27	16 847,9	25 200,88	32 744,69	37 70	Area at the end of year 90, per Age Classe and Species Eucalyptus Maritime pine Chestnut 16 000
Harv. Volume (m3)	0	0	0	400,87	1 67	12 000
Thin. Volume (m3)	0	1 942,03	10 546,8	13 323,02	6 24	2 8 000
Timber Volume (m3)	0	1 942,03	10 5 <mark>4</mark> 6,8	<mark>1</mark> 3 723,88	7 91	4 000
Carbon Stock (Mg/y)	993,47	6 098,75	9 408,82	11 126,4	13 75	0 <=10 11-20 21-30 31-40 41-50 51-60 >60 Age Class

 Extend the functionality of the web based decision support system and develop integration with platforms such as Ecosel to provide payments for ecosystem services

Thank you